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1.1. INTRODUCTION 

1.1.1 ALGORITHM DEFINITION  

What is an Algorithm? 

An algorithm is a finite set of instructions which, if followed, accomplish a particular task. In 
addition every algorithm must satisfy the following criteria: 

1. input: there are zero or more quantities which are externally supplied; 
2. output: at least one quantity is produced; 
3. definiteness: each instruction must be clear and unambiguous; 
4. finiteness: if we trace out the instructions of an algorithm, then for all cases the 

algorithm will terminate after a finite number of steps; 
5. effectiveness: every instruction must be sufficiently basic that it can in principle be 

carried out by a person using only pencil and paper. It is not enough that each 
operation be definite, but it must also be feasible. 

1.1.2. ALGORITHM SPECIFICATIONS 

 

Recursive Algorithms 

• Recursion is similar to the method of induction which is often used to prove mathematical 

statements.  

• In mathematical induction, a statement about integers (e.g., the sum of the first n positive 

integers is n (n +1)12) is proved by showing that the statement can be proved for integer k if it 

is assumed to be true for integer k -1.  

To understand a recursive function, you must. 

(1) Formulate in your mind a statement of what it is that the function is supposed to do, for a given 

input. 

(2) Verify that the function does achieve its goal if the recursive invocations to itself do what they are 

supposed to. 

(3) Ensure that a finite number of recursive invocations of the function eventually lead to an invocation 

which satisfies the terminating condition (otherwise, the function will keep calling itself and not 

terminate!).· 

(4) The function should perform the correct computations if the terminating condition is encountered. . 

Example 1.5 [Permutation generator]:·  
• Given a set of n > 1 elements, the problem is to print all possible permutations of this set. 

• For example if the set is {a, b, c}, then the set of permutations is {(a, b, c), (a, c, b),(b, a, c),(b, 

c, a),(c, a, b),(c, b, a)}. It is easy to see that given n elements, there are n ! different 

permutations. 



 

• A simple algorithm can be obtained by looking at the the case of four elements (a,b,c,d). The 

answer can be constructed by writing. 

 

• a followed by all permutations of (b,c,d) 

(2) b followed by all permutations of (a,c,d) 

(3) c followed by all permutations of (a,b,d) 

(4) d followed by all permutations of (a,b,c) 

• The expression “followed by all permutations” is the clue to ‘recursion. It implies that we can 

solve the problem for a set with n elements if we have an algorithm that works on n – 1 

elements. These observations lead to Program 1.11, which is invoked by perm (a, 0, n). 

 

1.1.3. PERFORMANCE ANALYSIS 

Space complexity:  

Amount of memory space required to solve the algorithm.  

 

o i)Fixed Space Requirements (C) 
Independent of the characteristics of the inputs and outputs 
o instruction space 
o space for simple variables, fixed-size structured variable, 

constants 
o ii)Variable Space Requirements (S

P
(I)) 

       depend on the instance characteristic I 
o number, size, values of inputs and outputs associated with 

I 
• recursive stack space, formal parameters, local 

variables, return address 
Space Complexity 

S(P)=C+S
P

(I) 

*Program 1.10: Iterative function for summing a list of numbers (p.20) 

float sum(float list[ ], int n) 

{ 

  float tempsum = 0; 

inti; 

  for (i = 0; i<n; i++) 
tempsum += list [i]; 



 

  return tempsum; 

}     

*Program 1.11: Recursive function for summing a list of numbers (p.20) 
float rsum(float list[ ], int n) 

{ 

   if (n) return rsum(list, n-1) + list[n-1]; 

   return 0; 

 } 

Time Complexity : 

➢ Amount of compilation time and run time to execute algorithm  
➢ A program step is a syntactically or semantically meaningful program 

segment whose execution time is independent of the instance 
characteristics. 

 

T
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*Program 1.12: Program 1.10 with count statements (p.23) 

 

float sum(float list[ ], int n) 

{ 

    float tempsum = 0; count++; /* for assignment */ 

inti; 
    for (i = 0; i< n; i++) { 

          count++;             /*for the for loop */ 

tempsum += list[i]; count++;  /* for assignment */ 

    } 

    count++;         /* last execution of for */ 

    return tempsum;  

    count++;         /* for return */  

}    

 

*Program 1.13: Simplified version of Program 1.12 (p.23) 

 

float sum(float list[ ], int n) 

{ 



 

    float tempsum = 0; 

inti;  

    for (i = 0; i< n; i++) 

         count += 2; 

    count += 3; 

    return 0; 

} 

1.2. ELEMENTARY DATA STRUCTURES 
1.2.1. STACK 

o Stack is a linear data structure which follows a particular order in which the operations 

are performed. The order may be LIFO(Last In First Out)  

o Stack is an abstract data type with a bounded(predefined) capacity. It is a simple 
data structure that allows adding and removing elements in a particular order.  

o Every time an element is added, it goes on the top of the stack and the only element 
that can be removed is the element that is at the top of the stack, just like a pile of 
objects. 

Basic features of Stack 

1. Stack is an ordered list of similar data type. 

2. Stack is a LIFO(Last in First out) structure or we can say FILO(First in Last out). 

3. push() function is used to insert new elements into the Stack and pop() function is 

used to remove an element from the stack. Both insertion and removal are allowed 

at only one end of Stack called Top. 

4. Stack is said to be in Overflow state when it is completely full and is said to be 

in Underflow state if it is completely empty. 



 

Algorithm for PUSH operation 

1. Check if the stack is full or not. 

2. If the stack is full, then print error of overflow and exit the program. 

3. If the stack is not full, then increment the top and add the element. 

Algorithm for POP operation 

1. Check if the stack is empty or not. 

2. If the stack is empty, then print error of underflow and exit the program. 

3. If the stack is not empty, then print the element at the top and decrement the top. 

 

Applications of Stack 

The simplest application of a stack is to reverse a word. You push a given word to stack - 
letter by letter - and then pop letters from the stack. 

There are other uses also like: 

1. Parsing 

2. Expression Conversion(Infix to Postfix, Postfix to Prefix etc) 

1.2.2. QUEUE 
 

What is a Queue Data Structure? 

o Queue is also an abstract data type or a linear data structure, just like stack data 
structure, in which the first element is inserted from one end called the REAR(also 
called tail), and the removal of existing element takes place from the other end 
called as FRONT(also called head). 

o This makes queue as FIFO(First in First Out) data structure, which means that 
element inserted first will be removed first. 

o The process to add an element into queue is called Enqueue and the process of 
removal of an element from queue is called Dequeue. 

https://www.studytonight.com/data-structures/stack-data-structure
https://www.studytonight.com/data-structures/stack-data-structure


 

 

 

Basic features of Queue 

1. Like stack, queue is also an ordered list of elements of similar data types. 

2. Queue is a FIFO( First in First Out ) structure. 

3. Once a new element is inserted into the Queue, all the elements inserted before the 

new element in the queue must be removed, to remove the new element. 

4. peek( ) function is oftenly used to return the value of first element without 

dequeuing it. 

Implementation of Queue Data Structure 

o Queue can be implemented using an Array, Stack or Linked List. The easiest way of 
implementing a queue is by using an Array. 

o Initially the head(FRONT) and the tail(REAR) of the queue points at the first index of 
the array (starting the index of array from 0). As we add elements to the queue, 
the tail keeps on moving ahead, always pointing to the position where the next 
element will be inserted, while the head remains at the first index. 



 

 

Algorithm for ENQUEUE operation 

1. Check if the queue is full or not. 

2. If the queue is full, then print overflow error and exit the program. 

3. If the queue is not full, then increment the tail and add the element. 

Algorithm for DEQUEUE operation 

1. Check if the queue is empty or not. 

2. If the queue is empty, then print underflow error and exit the program. 

3. If the queue is not empty, then print the element at the head and increment the 

head. 

 



 

1.2.3. TREES 

• Tree is a hierarchical data structure which stores the information 

naturally in the form of hierarchy style. 

• Tree is one of the most powerful and advanced data structures. 

• It is a non-linear data structure compared to arrays, linked lists, stack 

and queue. 

• It represents the nodes connected by edges. 

 
 
The above figure represents structure of a tree. Tree has 2 subtrees. 

A is a parent of B and C. 
B is called a child of A and also parent of D, E, F. 

Field Description 

Root Root is a special node in a tree. The 

entire tree is referenced through it. It 

does not have a parent. 

Parent 

Node 

Parent node is an immediate 

predecessor of a node. 

Child 

Node 

All immediate successors of a node 

are its children. 

Siblings Nodes with the same parent are 

called Siblings. 

Path Path is a number of successive edges 

from source node to destination 

node. 



 

Height of 

Node 

Height of a node represents the 

number of edges on the longest path 

between that node and a leaf. 

Height of 

Tree 

Height of tree represents the height 

of its root node. 

Depth of 

Node 

Depth of a node represents the 

number of edges from the tree's root 

node to the node. 

Degree of 

Node 

Degree of a node represents a 

number of children of a node. 

Edge Edge is a connection between one 

node to another. It is a line between 

two nodes or a node and a leaf. 

 

BINARY TREE  

 

o A binary tree is a hierarchical data structure in which each node has at most two 
children generally referred as left child and right child. 

o Each node contains three components: 

1. Pointer to left subtree 

2. Pointer to right subtree 

3. Data element 

The topmost node in the tree is called the root. An empty tree is represented 
by NULL pointer. 

 



 

 

Types of Binary Trees (Based on Structure) 

• Rooted binary tree: It has a root node and every node has atmost two children. 

• Full binary tree: It is a tree in which every node in the tree has either 0 or 2 children. 

 

 

 

o The number of nodes, n, in a full binary tree is atleast n = 2h – 1, and 

atmost n = 2h+1 – 1, where h is the height of the tree. 

o The number of leaf nodes l, in a full binary tree is number, L of internal nodes 

+ 1, i.e, l = L+1. 

• Perfect binary tree: It is a binary tree in which all interior nodes have two children 

and all leaves have the same depth or same level. 

 

 

 



 

o A perfect binary tree with l leaves has n = 2l-1 nodes. 

o In perfect full binary tree, l = 2h and n = 2h+1 - 1 where, n is number of 

nodes, h is height of tree and l is number of leaf nodes 

• Complete binary tree: It is a binary tree in which every level, except possibly the 

last, is completely filled, and all nodes are as far left as possible. 

 

The number of internal nodes in a complete binary tree of n nodes is floor(n/2). 

1.2.4. DICTIONARIES  

o A dictionary is a general-purpose data structure for storing a group of objects. 

A dictionary has a set of keys and each key has a single associated value.  

o When presented with a key, the dictionary will return the associated value. 

o For example, the results of a classroom test could be represented as a 

dictionary with pupil's names as keys and their scores as the values: 

results={'Detra':17, 
'Nova':84, 
'Charlie':22, 
'Henry':75, 
'Roxanne':92, 
'Elsa':29} 

o The concept of a key-value store is widely used in various computing systems, 

such as caches and high-performance databases. 

o Dictionaries are often implemented as hash tables. 

o Keys in a dictionary must be unique; an attempt to create a duplicate key will 

typically overwrite the existing value for that key. 

Dictionaries typically support several operations: 

 

• retrieve a value (depending on language, attempting to retrieve a missing key may give a default 
value or throw an exception) 

https://en.m.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_data_structures/Hash_tables_and_hashing


 

• insert or update a value (typically, if the key does not exist in the dictionary, the key-value pair is 
inserted; if the key already exists, its corresponding value is overwritten with the new one) 

• remove a key-value pair 

• test for existence of a key 

1.2.5. Priority Queues 

• Priority queue data structure is an abstract data type that provides a way to 
maintain a set of elements, each with an associated value called key.  

• There are two kinds of priority queues: a max-priority queue and a min-priority 
queue. In both kinds, the priority queue stores a collection of elements and is 
always able to provide the most “extreme” element, which is the only way to 
interact with the priority queue. For the remainder of this section, we will discuss 
max-priority queues. Min-priority queues are analogous. 

Operations 

• A max-priority queue provides the following operations: 

o insert: add an element to the priority queue. 

o maxElement: return the largest element in the priority queue. 

o removeMaxElement: remove the largest element from the priority queue. 

 

. Inserting an Element into the Priority Queue 

Inserting an element into a priority queue (max-heap) is done by the following 

steps. 

 

• Insert the new element at the end of the tree.

 



 

• Insert an element at the end of the queue 

• Heapify the tree.  

• Heapify after insertion 

Algorithm for insertion of an element into priority queue (max-heap) 

If there is no node,  

  create a newNode. 

else (a node is already present) 

  insert the newNode at the end (last node from left to right.) 

 

heapify the array 

Deleting an Element from the Priority Queue 

Deleting an element from a priority queue (max-heap) is done as follows: 

https://www.programiz.com/dsa/heap-data-structure#heapify


 

• Select the element to be deleted.  

Swap it with the last element. Swap 

with the last leaf node element 

• Remove the last element.

Remove the last element leaf 

• Algorithm for deletion of an element in the priority queue (max-heap) 

If nodeToBeDeleted is the leafNode 

  remove the node 



 

Else swap nodeToBeDeleted with the lastLeafNode 

  remove noteToBeDeleted 

 

heapify the array 

Peeking from the Priority Queue (Find max/min) 

Peek operation returns the maximum element from Max Heap or minimum 

element from Min Heap without deleting the node. 

For both Max heap and Min Heap 

return rootNode 

1.2.6. SETS AND DISJOINT SETS UNION  

o A disjoint-set data structure is a data structure that keeps track of a set 

of elements partitioned into a number of disjoint (non-overlapping) 

subsets.  

o A union-find algorithm is an algorithm that performs two useful 

operations on such a data structure: 

Find: Determine which subset a particular element is in. This can be 

used for determining if two elements are in the same subset. 

Union: Join two subsets into a single subset. 

Set: 

A set is a collection of distinct elements. The Set can be 
represented, for examples, as S1={1,2,5,10}. 

 

Disjoint Sets: 

The disjoints sets are those do not have any common element. 

For example S1={1,7,8,9} and S2={2,5,10}, then we can say that 
S1 and S2 are two disjoint sets. 

 

Disjoint Set Operations: 

The disjoint set operations are 

1.  Union 

2.  Find 

http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Disjoint-set_data_structure


 

 

Disjoint set Union: 

If Si and Sj are tow disjoint sets, then their union Si U Sj consists of 
all the elements x such that x is in Si or Sj. 

 

Example: 

S1={1,7,8,9} S2={2,5,10} 

S1 U S2={1,2,5,7,8,9,10} 

Find: 

Given the element I, find the set containing i. 

 

Example: 

S1={1,7,8,9} S2={2,5,10} s3={3,4,6} 

Then, 

Find(4)= S3 Find(5)=S2 Find97)=S1 

 

Set Representation: 

The set will be represented as the tree structure where all children will 

store the address of parent / root node. The root node will store null at 

the place of parent address. In the given set of elements any element 

can be selected as the root node, generally we select the first node as 

the root node. 

 

Example: 

S1={1,7,8,9} S2={2,5,10} s3={3,4,6} 

Then these sets can be represented as 

 

2. bool find(intArr[],int A,int B) 

3. { 

4. if(Arr[ A ]==Arr[ B ]) 

5. returntrue; 

6. else 

7. returnfalse; 

8. } 

9. //change all entries from Arr[ A ] to Arr[ B ]. 

10. voidunion(intArr[],int N,int A,int B) 

11. { 

12. int TEMP =Arr[ A ]; 

13. for(inti=0;i<N;i++) 

14. { 

15. if(Arr[i]== TEMP) 

16. Arr[i]=Arr[ B ]; 

17. } 



 

18. } 

 

 

 

 

1.2.7. GRAPHS 

 

Definition  

A graph is a pictorial representation of a set of objects where some pairs of objects are 
connected by links. The interconnected objects are represented by points termed 
as vertices, and the links that connect the vertices are called edges. 

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of 
edges, connecting the pairs of vertices. Take a look at the following graph − 

 

In the above graph, 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

Graph Terminology  

Mathematical graphs can be represented in data structure. We can represent a graph using 
an array of vertices and a two-dimensional array of edges. Before we proceed further, let's 
familiarize ourselves with some important terms − 

• Vertex − Each node of the graph is represented as a vertex. In the following 
example, the labeled circle represents vertices. Thus, A to G are vertices. We can 
represent them using an array as shown in the following image. Here A can be 
identified by index 0. B can be identified using index 1 and so on. 

• Edge − Edge represents a path between two vertices or a line between two vertices. 
In the following example, the lines from A to B, B to C, and so on represents edges. 
We can use a two-dimensional array to represent an array as shown in the following 
image. Here AB can be represented as 1 at row 0, column 1, BC as 1 at row 1, 
column 2 and so on, keeping other combinations as 0. 



 

• Adjacency − Two node or vertices are adjacent if they are connected to each other 
through an edge. In the following example, B is adjacent to A, C is adjacent to B, and 
so on. 

• Path − Path represents a sequence of edges between the two vertices. In the 
following example, ABCD represents a path from A to D. 

 

Basic Operations 

Following are basic primary operations of a Graph − 

• Add Vertex − Adds a vertex to the graph. 

• Add Edge − Adds an edge between the two vertices of the graph. 

• Display Vertex − Displays a vertex of the graph. 

Adjacency Matrix   

It is a two dimensional array with Boolean flags. As an example, we can represent the 

edges for the above graph using the following adjacency matrix 



 

 

In the given graph, A is connected with B, C and D nodes, so adjacency matrix 

will have 1s in the ‘A’ row for the ‘B’, ‘C’ and ‘D’ column 

Adjacency List   

It is an array of linked list nodes. In other words, it is like a list whose elements are 
a linked list. For the given graph example, the edges will be represented by the 
below adjacency list:  

 

 

 

Connected Graph 

A graph G is said to be connected if there exists a path between every pair of vertices. 
There should be at least one edge for every vertex in the graph. So that we can say that it is 
connected to some other vertex at the other side of the edge. 



 

Example 

In the following graph, each vertex has its own edge connected to other edge. Hence it is a 
connected graph. 

 

Disconnected Graph 

A graph G is disconnected, if it does not contain at least two connected vertices. 

Example 1 

The following graph is an example of a Disconnected Graph, where there are two 
components, one with ‘a’, ‘b’, ‘c’, ‘d’ vertices and another with ‘e’, ’f’, ‘g’, ‘h’ vertices. 

 

The two components are independent and not connected to each other. Hence it is called 
disconnected graph. 
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2.1. DIVIDE AND CONQUER 

2.1.1. THE GENERAL METHOD  

General Method 

Divide and conquer is a design strategy which is well known to 

breaking down efficiency barriers. When the method applies, it often leads to 

a large improvement in time complexity. For example, from O (n2) to O (n log 

n) to sort the elements. 

Divide and conquer strategy is as follows: divide the problem 

instance into two or more smaller instances of the same problem, solve the smaller 

instances recursively, and assemble the solutions to form a solution of the original 

instance. The recursion stops when an instance is reached which is too small to 

divide. When dividing the instance, one can either use whatever division comes 

most easily to hand or invest time in making the division carefully so that the 

assembly is simplified. 
 
Divide and conquer algorithm consists of two parts: 
 
Divide  :  Divide the problem into a number of sub problems. The  

sub problems 
are solved recursively. 
Conquer  :  The solution to the original problem is then formed from  

the solutions 
to the sub problems (patching together the answers). 
 
Traditionally, routines in which the text contains at least 

two recursive calls are called divide and conquer algorithms, while 
routines whose text contains only one recursive call are not. Divide-and-
conquer is a very powerful use of recursion. 

DANDC (P) 
{ 
if SMALL (P) then 

return S (p);  
else 
{ 

divide p into smaller instances p1, p2, …. Pk, k 1; apply DANDC 
to each of these sub problems; 
return (COMBINE (DANDC (p1) , DANDC (p2),….DANDC (pk));  
} 
} 

SMALL (P) is a Boolean valued function which determines 

whether the input size is small enough so that the answer can be 

computed without splitting. If this is so function „S‟ is invoked 

otherwise, the problem „p‟ into smaller sub problems. These sub 

problems p1, p2, . . . , pk  are solved by recursive application of DANDC. 
 

 

 

 



2.1.2. THE DEFECTIVE CHESSBOARD 

• Given a n by n board where n is of form 2k where k >= 1 (Basically n is a power of 2 

with minimum value as 2). The board has one missing cell (of size 1 x 1).  

• Fill the board using L shaped tiles. A L shaped tile is a 2 x 2 square with one cell of 

size 1×1 missing. 

• This problem can be solved using Divide and Conquer. Below is the recursive 

algorithm. 

// n is size of given square, p is location of missing cell 

Tile(int n, Point p) 

 

1) Base case: n = 2, A 2 x 2 square with one cell missing is nothing  

   but a tile and can be filled with a single tile. 

 

2) Place a L shaped tile at the center such that it does not cover 

   the n/2 * n/2 subsquare that has a missing square. Now all four  

   subsquares of size n/2 x n/2 have a missing cell (a cell that doesn't 

   need to be filled).  See figure 2 below. 

 

3) Solve the problem recursively for following four. Let p1, p2, p3 and 

   p4 be positions of the 4 missing cells in 4 squares. 

   a) Tile(n/2, p1) 

   b) Tile(n/2, p2) 

   c) Tile(n/2, p3) 

   d) Tile(n/2, p3)  

 

The below diagrams show working of above algorithm 

 
Figure 2: After placing first tile 

https://media.geeksforgeeks.org/wp-content/cdn-uploads/tiles3.png
https://media.geeksforgeeks.org/wp-content/cdn-uploads/tiles3.png


 

  

Figure 3: Recurring for first subsquare. 

  

  

Figure 4: Shows first step in all four subsquares. 

 

2.1.3 BINARY SEARCH  

 

• Binary search looks for a particular item by comparing the middle most item of the 

collection. ... If a match occurs, then the index of item is returned. If the middle item 

is greater than the item, then the item is searched in the sub-array to the left of the 

middle item. 

• For a binary search to work, it is mandatory for the target array to be sorted. We shall 

learn the process of binary search with a pictorial example.  

• The following is our sorted array and let us assume that we need to search the 

location of value 31 using binary search. 

 

First, we shall determine half of the array by using this formula − 

mid = low + (high - low) / 2 

Here it is, 0 + (9 - 0 ) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array. 

https://www.geeksforgeeks.org/divide-and-conquer-set-6-tiling-problem/tiles4/
https://www.geeksforgeeks.org/divide-and-conquer-set-6-tiling-problem/tiles4/
https://www.geeksforgeeks.org/divide-and-conquer-set-6-tiling-problem/tiles5/
https://www.geeksforgeeks.org/divide-and-conquer-set-6-tiling-problem/tiles5/


 

We change our low to mid + 1 and find the new mid value again. 

low = mid + 1 

mid = low + (high - low) / 2 

Our new mid is 7 now. We compare the value stored at location 7 with our target value 31. 

 

The value stored at location 7 is not a match, rather it is more than what we are looking for. 

So, the value must be in the lower part from this location. 

 

Hence, we calculate the mid again. This time it is 5. 

 

We compare the value stored at location 5 with our target value. We find that it is a match. 

 

 

Procedure binary_search 

   A ← sorted array 

   n ← size of array 

   x ←value to be searched 

 

Set lowerBound =1 

Set upperBound = n  

 

while x not found 



if upperBound < lowerBound  

         EXIT: x does not exists. 

 

set midPoint = lowerBound +( upperBound - lowerBound )/2 

 

if A[midPoint]< x 

set lowerBound = midPoint +1 

 

if A[midPoint]> x 

set upperBound = midPoint -1 

 

if A[midPoint]= x  

         EXIT: x found at location midPoint 

endwhile 

 

end procedure 

 

 

2.1.4. FINDING MAXIMUM AND MINIMUM 

1. Let us consider simple problem that can be solved by the divide-and conquer technique. 
2. The problem is to find the maximum and minimum value in a set of ‘n’ elements. 
3. By comparing numbers of elements, the time complexity of this algorithm can be 

analyzed. 

4. Hence, the time is determined mainly by the total cost of the element comparison. 

5. comparison. 

 

Explanation: 

a. Straight MaxMin requires 2(n-1) element comparisons in the best, average & worst 
cases. 

b. By realizing the comparison of a [i]max is false, improvement in a algorithm can be 
done. 



c. Hence we can replace the contents of the for loop by, If (a [i]> Max) then Max = a [i]; Else 
if (a [i]< 2(n-1) 

d. On the average a[i] is > max half the time, and so, the avg. no. of comparison is 3n/2-1. 

A Divide and Conquer Algorithm for this problem would proceed as follows: 

a. Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem. 

b. Here ‘n’ is the no. of elements in the list (a [i],….,a[j]) and we are interested in finding 
the maximum and minimum of the list. 

c. If the list has more than 2 elements, P has to be divided into smaller instances. 

d. For example, we might divide ‘P’ into the 2 instances, P1=([n/2],a[1],……..a[n/2]) & P2= ( 

n-[n/2], a[[n/2]+1],….., a[n]) After having divided ‘P’ into 2 smaller sub problems, we can 
solve them by recursively invoking the same divide-and-conquer algorithm. 

Algorithm: 

 



Example: 

A 1 2 3 4 5 6 7 8 9 

Values 22 13 -5 -8 15 60 17 31 47 

Tree Diagram: 

 

 

2.1.5. MERGE SORT 

• Merge sort is one of the most efficient sorting algorithms.  

• It works on the principle of Divide and Conquer.  

• Merge sort repeatedly breaks down a list into several sublists until each sublist 

consists of a single element and merging those sublists in a manner that results into a 

sorted list.  

• Example: Let us consider an example to understand the approach better. 

1. Divide the unsorted list into n sublists, each comprising 1 element (a list of 1 

element is supposed sorted). 

 



• Repeatedly merge sublists to produce newly sorted sublists until there is only 1 sublist 

remaining. This will be the sorted list. 

 

• The first element of both lists is compared. If sorting in ascending order, the smaller 

element among two becomes a new element of the sorted list.  

• This procedure is repeated until both the smaller sublists are empty and the newly 

combined sublist covers all the elements of both the sublists. 



 voidmerge(int*Arr,intstart,intmid,intend){ 

 // create a temp array 

 inttemp[end-start+1]; 

 

 // crawlers for both intervals and for temp 

 inti=start,j=mid+1,k=0; 

 

 // traverse both arrays and in each iteration add smaller of both elements in temp  

 while(i<=mid&&j<=end){ 

  if(Arr[i]<=Arr[j]){ 

   temp[k]=Arr[i]; 

   k+=1;i+=1; 

  } 

  else{ 

   temp[k]=Arr[j]; 

   k+=1;j+=1; 

  } 

 } 

 

 // add elements left in the first interval  

 while(i<=mid){ 

  temp[k]=Arr[i]; 

  k+=1;i+=1; 

 } 

 

 // add elements left in the second interval  

 while(j<=end){ 



  temp[k]=Arr[j]; 

  k+=1;j+=1; 

 } 

 

 // copy temp to original interval 

 for(i=start;i<=end;i+=1){ 

  Arr[i]=temp[i-start] 

 } 

} 

 

// Arr is an array of integer type 

// start and end are the starting and ending index of current interval of Arr 

 

voidmergeSort(int*Arr,intstart,intend) 

{ 

 

 if(start<end){ 

  intmid=(start+end)/2; 

  mergeSort(Arr,start,mid); 

  mergeSort(Arr,mid+1,end); 

  merge(Arr,start,mid,end); 

 } 

} 

 

2.1.6. QUICK SORT: 

• Technically, quick sort follows the below steps: 

Step 1 − Make any element as pivot 

Step 2 − Partition the array on the basis of pivot 

Step 3 − Apply quick sort on left partition recursively 

Step 4 − Apply quick sort on right partition recursively 

 

• Consider the following array: 50, 23, 9, 18, 61, 32.  

• the pivot (32) comes at its actual position and all elements to its left are lesser, and all 

elements to the right are greater than itself. 

• Step 2: The main array after the first step becomes 

23, 9, 18, 32, 61, 50 

Step 3: Now the list is divided into two parts: 

1. Sublist before pivot element 

2. Sublist after pivot element 

Step 4: Repeat the steps for the left and right sublists recursively. The final array thus 

becomes 

9, 18, 23, 32, 50, 61. 

 

void swap(int *a, int *b) 

{ 



 int temp;  

 temp = *a; 

 *a = *b; 

 *b = temp; 

} 

 

// Partitioning the array on the basis of values at high as pivot value. 

int Partition(int a[], int low, int high) 

{ 

 int pivot, index, i; 

 index = low; 

 pivot = high; 

 

 

 for(i=low; i < high; i++) 

 { 

  if(a[i] < a[pivot]) 

  { 

   

 

 return index; 

} 

 

 

  

int QuickSort(int a[], int low, int high) 

{ 

 int pindex; 

 if(low < high) 

  pindex = RandomPivotPartition(a, low, high); 

   

  QuickSort(a, low, pindex-1); 

  QuickSort(a, pindex+1, high); 

 } 

 return 0; 

} 

 

int main() 

{ 

 int n, i; 

 cout<<"\nEnter the number of data elements to be sorted: "; 

 cin>>n; 

 

 int arr[n]; 

 for(i = 0; i < n; i++) 

 { 

  cout<<"Enter element "<<i+1<<": "; 

  cin>>arr[i]; 

 } 

 



 QuickSort(arr, 0, n-1); 

 

  

 cout<<"\nSorted Data "; 

 for (i = 0; i < n; i++) 

 cout<<"->"<<arr[i]; 

 

 return 0; 

} 

 

2.1.7. SELECTION SORT: 

• Selection sort is an algorithm that selects the smallest element from an unsorted list in 

each iteration and places that element at the beginning of the unsorted list. 

 

How Selection Sort Works? 

1. Set the first element as minimum.

Select first element as minimum 

2. Compare minimum with the second element. If the second element is smaller 

than minimum, assign the second element as minimum. 

 

Compare minimum with the third element. Again, if the third element is smaller, then 

assign minimum to the third element otherwise do nothing. The process goes on until 



the last element. Compare 

minimum with the remaining elements 

3. After each iteration, minimum is placed in the front of the unsorted list.

Swap the first with minimum 

4. For each iteration, indexing starts from the first unsorted element. Step 1 to 3 are 

repeated until all the elements are placed at their correct positions. 

 

voidselectionSort(intarray[], int size){ 

for (int step = 0; step < size - 1; step++) { 

int min_idx = step; 

for (int i = step + 1; i < size; i++) { 

 

// To sort in descending order, change > to < in this line. 

// Select the minimum element in each loop. 

if (array[i] <array[min_idx]) 

        min_idx = i; 

    } 

 

// put min at the correct position 

    swap(&array[min_idx], &array[step]); 

  } 

} 

voidswap(int *a, int *b){ 



int temp = *a; 

  *a = *b; 

  *b = temp; 

} 

 

// function to print an array 

voidprintArray(intarray[], int size){ 

for (int i = 0; i < size; i++) { 

cout<<array[i] <<" "; 

  } 

cout<<endl; 

} 

 

2.1.8. STRASSEN’S MATRIX MULTIPLICATION 

• For multiplying the two 2*2 dimension matrices Strassen's used some formulas in 

which there are seven multiplication and eighteen addition, subtraction, and in brute 

force algorithm, there is eight multiplication and four addition.  

• The utility of Strassen's formula is shown by its asymptotic superiority when 

order n of matrix reaches infinity. Let us consider two 

matrices A and B, n*n dimension, where n is a power of two.  

• It can be observed that we can contain four n/2*n/2 submatrices from A, B and their 

product C. C is the resultant matrix of A and B. 

Procedure of Strassen matrix multiplication 

There are some procedures: 

1. Divide a matrix of order of 2*2 recursively till we get the matrix of 2*2. 

2. Use the previous set of formulas to carry out 2*2 matrix multiplication. 

3. In this eight multiplication and four additions, subtraction are performed. 

4. Combine the result of two matrixes to find the final product or final matrix. 

Formulas for Stassen’s matrix multiplication 

In Strassen’s matrix multiplication there are seven multiplication and four addition, 

subtraction in total. 

    1. D1 =  (a11 + a22) (b11 + b22) 

    2. D2 =  (a21 + a22).b11 

    3. D3 =  (b12 – b22).a11 

    4. D4 =  (b21 – b11).a22 

    5. D5 =  (a11 + a12).b22 

    6. D6 =  (a21 – a11) . (b11 + b12) 

    7. D7 =  (a12 – a22) . (b21 + b22) 

 

    C11 = d1 + d4 – d5 + d7 



    C12 = d3 + d5 

    C21 = d2 + d4 

    C22 = d1 + d3 – d2 – d6 

Algorithm for Strassen’s matrix multiplication 

Algorithm Strassen(n, a, b, d) 

begin  

 If n = threshold then compute 

  C = a * b is a conventional matrix. 

 Else 

  Partition a into four sub matrices  a11, a12, a21, a22. 

  Partition b into four sub matrices b11, b12, b21, b22. 

  Strassen ( n/2, a11 + a22, b11 + b22, d1) 

  Strassen ( n/2, a21 + a22, b11, d2) 

  Strassen ( n/2, a11, b12 – b22, d3) 

  Strassen ( n/2, a22, b21 – b11, d4) 

  Strassen ( n/2, a11 + a12, b22, d5) 

  Strassen (n/2, a21 – a11, b11 + b22, d6) 

  Strassen (n/2, a12 – a22, b21 + b22, d7) 

 

  C = d1+d4-d5+d7     d3+d5 

  d2+d4           d1+d3-d2-d6   

   

 end if 

  

 return (C) 

end. 
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3.1. GREEDY METHOD : 

 

3.1.1. GENERAL METHOD  

 

An algorithm is designed to achieve optimum solution for a given problem. In greedy 

algorithm approach, decisions are made from the given solution domain. As being greedy, the 

closest solution that seems to provide an optimum solution is chosen. 

An algorithm is designed to achieve optimum solution for a given problem. In greedy 
algorithm approach, decisions are made from the given solution domain. As being greedy, 
the closest solution that seems to provide an optimum solution is chosen. 

Greedy algorithms try to find a localized optimum solution, which may eventually lead to 

globally optimized solutions. However, generally greedy algorithms do not provide 
globally optimized solutions. 

Counting Coins 

This problem is to count to a desired value by choosing the least possible coins and the 

greedy approach forces the algorithm to pick the largest possible coin. If we are provided 
coins of ₹ 1, 2, 5 and 10 and we are asked to count ₹ 18 then the greedy procedure will be − 

• 1 − Select one ₹ 10 coin, the remaining count is 8 

• 2 − Then select one ₹ 5 coin, the remaining count is 3 

• 3 − Then select one ₹ 2 coin, the remaining count is 1 

• 4 − And finally, the selection of one ₹ 1 coins solves the problem 

Though, it seems to be working fine, for this count we need to pick only 4 coins. But if we 

slightly change the problem then the same approach may not be able to produce the 
same optimum result. 

For the currency system, where we have coins of 1, 7, 10 value, counting coins for value 18 

will be absolutely optimum but for count like 15, it may use more coins than necessary. 
For example, the greedy approach will use 10 + 1 + 1 + 1 + 1 + 1, total 6 coins. Whereas the 
same problem could be solved by using only 3 coins (7 + 7 + 1) 

 

3.1.2. CONTAINER LOADING  

• A container is a class, a data structure, or an abstract data type (ADT) whose 

instances are collections of other objects.  

• In other words, they store objects in an organized way that follows specific access 

rules. The size of the container depends on the number of objects (elements) it 

contains. 

• Ship has capacity c. 

• m containers are available for loading. 



• Weight of container i is wi. 

• Each weight is a positive number. 

• Sum of container weight < c. 

• Load as many containers as possible without sinking the ship 

• Can all containers be loaded into 2 ships whose capacity is c each? 

• Same as bin packing with 2 bins 

(Are 2 bins sufficient for all items?) 

• Same as machine scheduling with 2 machines 

(Can all jobs be completed by 2 machines in c time units?) 

• NP-hard 

. 

 

3.1.3. KNAPSACK PROBLEM 

The knapsack problem is a problem in combinatorial optimization: Given a set of items, 

each with a weight and a value, determine the number of each item to include in a collection 

so that the total weight is less than or equal to a given limit and the total value is as large as 

possible. 

According to the problem statement, 

• There are n items in the store 

• Weight of ith  item wi>0wi>0 

• Profit for ith  item pi>0pi>0 and 

• Capacity of the Knapsack is W 

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief 

may take only a fraction x i  of i thth item. 
0⩽xi⩽10⩽xi⩽1 

The i thth  item contributes the weight xi.wixi.wi to the total weight in the knapsack an 
profit xi.pixi.pi to the total profit. 
Hence, the objective of this algorithm is to 

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi) 

subject to constraint, 

∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W 

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add a 
fraction of one of the remaining items and increase the overall profit. 

Thus, an optimal solution can be obtained by 

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W 

In this context, first we need to sort those items according to the value of piwipiwi, so 

that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to store the fraction of items. 
Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W) 



for i = 1 to n 

do x[i] = 0 

weight = 0 

for i = 1 to n 

if weight + w[i] ≤ W then 

x[i] = 1 

weight = weight + w[i] 

else 

x[i] = (W - weight) / w[i] 

weight = W 

break 

return x 

Analysis 

If the provided items are already sorted into a decreasing order of piwipiwi, then the 
whileloop takes a time in O(n); Therefore, the total time including the sort is in O(n logn). 

Example 

Let us consider that the capacity of the knapsack W = 60 and the list of provided items are 

shown in the following table − 

Item B A C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio (piwi)(piwi) 7 10 6 5 

Solution 

After sorting all the items according to piwipiwi. First all of B is chosen as weight of B is 

less than the capacity of the knapsack. Next, item A is chosen, as the available capacity of 
the 



knapsack is greater than the weight of A. Now, C is chosen as the next item. However, the 
whole item cannot be chosen as the remaining capacity of the knapsack is less than the 
weight of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item can 
be selected. 

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 

This is the optimal solution. We cannot gain more profit selecting any different 
combination of items. 

 

 

3.1.4. TREE VERTEX SPLITTING 

• Let G= (V,E,w) be a weighted directed acyclic graph (wdag) with vertex set V, edge 

set E, and edge weighting funtionw. w(i,j) is the weight of the edge <i,j>∈E. w(i,j) is 

a positive integer for <i,j>∈E and w(i,j) is undefined if <i,j>∉E.  

• A source vetexis a vertex with zero indegree while a sink vetexis a vertex with zero 

out-degree. The delay, d(P), of the path P is the sum of the weights of the edges on 

that path. The delay, d (G), of the graph G is the maximum path delay in the graph, 

i.e., 

▪ d(G) = max { d(P) } 

• PinG 

• Let G/X be the wdag that results when each vertex v in X is split into two vi and 

vosuch that all edges <v,j>∈E are replaced by edges of the form <vo,j>and all edges 

<i,v>∈E are replaced by edges of the form <i,vi>. I.e., outbound edges of v now leave 

vertex vowhile the inbound edges of v now enter vertex vi. Figure 3 shows the result, 

G/X, of splitting the vertex 5 of the dag of Figure 2.  

• The dag vertex splitting problem (DVSP) is to find a least cardinality vertex set X 

such that d(G/X) ≤δ , where δ is a prespecified delay. For the dag of Figure 2 and δ = 

3, X = {5} is a solution to the DVSP problem. 

• Lemma 1: Let G= (V,E,w) be a weighted dag and let δ be a prespecified delay value. 

Let Max- 

• EdgeDelay = max { w(i,j) }. Then the DVSP has a solution 

iffδ≥ MaxEdgeDelay. 

▪ <i,j>∈E 



• Proof: Vertex splitting does not eliminate any edges. So, there is no X such that 

d(G/X) <MaxEdgeDelay.  

• Further, d(G/V) = MaxEdgeDelay. So, for every δ≥ MaxEdgeDelay, there is a least 

cardinality set X such that d(G/X) ≤δ.  

• For example, consider the following binary tree. The smallest vertex cover is {20, 50, 

30} and size of the vertex cover is 3. 

 

 

 

3.1.5. JOB SEQUENCING WITH DEADLINES 

•  

Let us consider, a set of n given jobs which are associated with deadlines and profit 

is earned, if a job is completed by its deadline.  

• These jobs need to be ordered in such a way that there is maximum profit. 

• It may happen that all of the given jobs may not be completed within their deadlines. 

• Assume, deadline of ith job Ji is di and the profit received from this job is pi. Hence, 

the optimal solution of this algorithm is a feasible solution with maximum profit. 

• Thus, D(i)>0D(i)>0 for 1⩽i⩽n1⩽i⩽n. 

• Initially, these jobs are ordered according to profit, 

i.e. p1⩾p2⩾p3⩾...⩾pnp1⩾p2⩾p3⩾...⩾pn. 

 

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k) 

D(0) := J(0) := 0  

k := 1  

J(1) := 1   // means first job is selected  

for i = 2 … n do  

   r := k  

   while D(J(r)) > D(i) and D(J(r)) ≠ r do  

      r := r – 1  

https://www.geeksforgeeks.org/vertex-cover-problem-set-2-dynamic-programming-solution-tree/amp/largestindependentset1/
https://www.geeksforgeeks.org/vertex-cover-problem-set-2-dynamic-programming-solution-tree/amp/largestindependentset1/


   if D(J(r)) ≤ D(i) and D(i) > r then  

      for l = k … r + 1 by -1 do  

         J(l + 1) := J(l)  

         J(r + 1) := i 

         k := k + 1  

• Let us consider a set of given jobs as shown in the following table. 

• We have to find a sequence of jobs, which will be completed within their deadlines 

and will give maximum profit. Each job is associated with a deadline and profit. 

 

Solution 

To solve this problem, the given jobs are sorted according to their profit in a descending 

order. Hence, after sorting, the jobs are ordered as shown in the following table. 

Job J2 J1 J4 J3 J5 

Deadline 1 2 2 3 1 

Profit 100 60 40 20 20 

From this set of jobs, first we select J2, as it can be completed within its deadline and 

contributes maximum profit. 

• Next, J1 is selected as it gives more profit compared to J4. 

• In the next clock, J4 cannot be selected as its deadline is over, hence J3 is selected as 

it executes within its deadline. 

• The job J5 is discarded as it cannot be executed within its deadline. 

Thus, the solution is the sequence of jobs (J2, J1, J3), which are being executed within their 

deadline and gives maximum profit. 

Total profit of this sequence is 100 + 60 + 20 = 180. 

 

3.1.6. MINIMUM COST SPANNING TREE 

Job J1 J2 J3 J4 J5 

Deadline 2 1 3 2 1 

Profit 60 100 20 40 20 



A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted undirected 

graph that connects all the vertices together with the minimum possible total edge weight. To 

derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used. 

If there are n number of vertices, the spanning tree should have n - 1 number of edges.  

Prim’s Algorithm : 

In Prim’s Algorithm we grow the spanning tree from a starting position.  

Algorithm Steps: 

• Maintain two disjoint sets of vertices. One containing vertices that are in the growing 

spanning tree and other that are not in the growing spanning tree. 

• Select the cheapest vertex that is connected to the growing spanning tree and is not in 

the growing spanning tree and add it into the growing spanning tree. This can be done 

using Priority Queues. Insert the vertices, that are connected to growing spanning tree, 

into the Priority Queue. 

• Check for cycles. To do that, mark the nodes which have been already selected and 

insert only those nodes in the Priority Queue that are not marked. 

Consider the example below: 

 



Kruskal’s Algorithm 

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing 

spanning tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an 

edge which has least weight and add it to the growing spanning tree. 

Algorithm Steps: 

• Sort the graph edges with respect to their weights. 

• Start adding edges to the MST from the edge with the smallest weight until the edge 

of the largest weight. 

• Only add edges which doesn't form a cycle , edges which connect only disconnected 

components. 

• Consider following example: 

 

 

 

3.1.7. OPTIMAL STORAGE ON TAPES 

Input: We are given ‘n’ problem that are to be stored on computer tape of length L and the 

length of program i is Li 

Such that 1 ≤i≤ n and Σ 1≤k≤j Li≤ 1 

Output: A permutation from all n! For the n programs so that when they are stored on tape in 

the order the MRT is minimized. 



Example: 

Let n = 3, (l1, l2, l3) = (8, 12, 2). As n = 3, there are 3! =6 possible ordering. 

All these orderings and their respective d value are given below: 

Ordering d (i) Value 

1, 2, 3 8 + (8+12) + (8+12+2) 50 

1, 3, 2 8 + 8 + 2 + 8 + 2 + 12 40 

2, 1, 3 12 + 12 + 8 +12 + 8 + 

2 

54 

2, 3, 1 12 + 12 +2 +12 + 2 + 

8 

48 

3, 1, 2 2 + 2 + 8 + 2 + 8+ 12 34 

3, 2, 1 2 + 2 +12 + 2 + 12 + 8 38 

The optimal ordering is 3, 1, 2. 

The greedy method is now applied to solve this problem. It requires that the programs are 

stored in non-decreasing order which can be done in O (nlogn) time. 

Greedy solution: 

i. Make tape empty 

ii. Fori = 1 to n do; 

iii. Grab the next shortest path 

iv. Put it on next tape. 

The algorithm takes the best shortest term choice without checking to see whether it is a big 

long term decision. 



Algorithm: 

 

 

3.1.8. OPTIMAL MERGE PATTERNS 

• Optimal merge pattern is a pattern that relates to the merging of two or more sorted 

files in a single sorted file. This type of merging can be done by the two-way merging 

method. 

• If we have two sorted files containing n and m records respectively then they could be 

merged together, to obtain one sorted file in time O (n+m). 

• There are many ways in which pairwise merge can be done to get a single sorted file. 

Different pairings require a different amount of computing time.The main thing is to 

pairwise merge the n sorted files so that the number of comparisons will be less. 

The formula of external merging cost is: 

 
 

Where, f (i) represents the number of records in each file and d (i) represents the depth. 

Algorithm for optimal merge pattern 

Algorithm Tree(n) 

//list is a global list of n single node  

{ 

 For  i=1 to i= n-1 do 

 { 

  // get a new tree node 

  Pt: new treenode;  

  // merge two trees with smallest length 

  (Pt = lchild) = least(list);  

  (Pt = rchild) = least(list);  

  (Pt =weight) = ((Pt = lchild) = weight) = ((Pt = rchild) = weight); 



  Insert (list , Pt); 

 } 

 // tree left in list  

 Return least(list);  

} 

Example: 

• Given a set of unsorted files: 5, 3, 2, 7, 9, 13 

• Now, arrange these elements in ascending order: 2, 3, 5, 7, 9, 13 

• After this, pick two smallest numbers and repeat this until we left with only one 

number. 

Now follow following steps: 

Step 1: Insert 2, 3 

 
 

Step 2: 

 
 

Step 3: Insert 5 



 
 

Step 4: Insert 13 

 
 

Step 5: Insert 7 and 9 

 
 

Step 6: 



 
 

So, The merging cost = 5 + 10 + 16 + 23 + 39 = 93 

 

 3.1.9. SINGLE SOURCE SHORTEST PATH 

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed 

weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 for each 

edge (u, v) Є E). 

Algorithm: Dijkstra’s-Algorithm (G, w, s) 

for each vertex v Є G.V   

v.d := ∞  

   v.∏ := NIL  

s.d := 0  

S := Ф  

Q := G.V  

while Q ≠ Ф  

   u := Extract-Min (Q)  

   S := S U {u}  

   for each vertex v Є G.adj[u]  

      if v.d>u.d + w(u, v)  

v.d := u.d + w(u, v)  

         v.∏ := u 

Example 

Let us consider vertex 1 and 9 as the start and destination vertex respectively. Initially, all 

the vertices except the start vertex are marked by ∞ and the start vertex is marked by 0. 

Vertex Initial 
Step1 

V1 

Step2 

V3 

Step3 

V2 

Step4 

V4 

Step5 

V5 

Step6 

V7 

Step7 

V8 

Step8 

V6 

1 0 0 0 0 0 0 0 0 0 



2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

• Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 

• 1→ 3→ 7→ 8→ 6→ 9 

• This path is determined based on predecessor information. 

•  

•  
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4.1. DYNAMIC PROBLEM 

4.1.1. GENERAL METHOD  

• Dynamic Programming solves problems by combining the solutions of 

subproblems.  

• Moreover, Dynamic Programming algorithm solves each sub-problem just once 

and then saves its answer in a table, thereby avoiding the work of re-computing 

the answer every time. 
The steps in a dynamic programming solution are: 
•  
➢  Verify that the principle of optimality holds 
➢  
➢  Set up the dynamic-programming recurrence equations 
➢  
➢   Solve the dynamic-programming recurrence equations 

for the value of the 
➢ optimal solution. 
➢  
➢   Perform a trace back step in which the solution itself is 

constructed. 
 

4.1.2. MULTISTAGE GRAPHS  

• A multistage graph G = (V, E) is a directed graph where vertices are partitioned 

into k (where k > 1) number of disjoint subsets S = {s1,s2,…,sk} such that edge (u, 

v) is in E, then u Є si and v Є s1 + 1 for some subsets in the partition and |s1| = |sk| = 

1. 

• The vertex s Є s1 is called the source and the vertex t Є sk is called sink. 

• G is usually assumed to be a weighted graph. In this graph, cost of an edge (i, j) is 

represented by c(i, j). Hence, the cost of path from source s to sink t is the sum of 

costs of each edges in this path. 

• The multistage graph problem is finding the path with minimum cost from 

source s to sink t. 

• Example 

• Consider the following example to understand the concept of multistage graph. 



 

According to the formula, we have to calculate the cost (i, j) using the following steps 

Step-1: Cost (K-2, j) 

• In this step, three nodes (node 4, 5. 6) are selected as j. Hence, we have three options 

to choose the minimum cost at this step. 

Cost(3, 4) = min {c(4, 7) + Cost(7, 9),c(4, 8) + Cost(8, 9)} = 7 

Cost(3, 5) = min {c(5, 7) + Cost(7, 9),c(5, 8) + Cost(8, 9)} = 5 

Cost(3, 6) = min {c(6, 7) + Cost(7, 9),c(6, 8) + Cost(8, 9)} = 5 

Step-2: Cost (K-3, j) 

Two nodes are selected as j because at stage k - 3 = 2 there are two nodes, 2 and 3. So, the 

value i = 2 and j = 2 and 3. 

Cost(2, 2) = min {c(2, 4) + Cost(4, 8) + Cost(8, 9),c(2, 6) + 

Cost(6, 8) + Cost(8, 9)} = 8 

Cost(2, 3) = {c(3, 4) + Cost(4, 8) + Cost(8, 9), c(3, 5) + Cost(5, 8)+ Cost(8, 9), c(3, 6) + 

Cost(6, 8) + Cost(8, 9)} = 10 

Step-3: Cost (K-4, j) 

Cost (1, 1) = {c(1, 2) + Cost(2, 6) + Cost(6, 8) + Cost(8, 9), c(1, 3) + Cost(3, 5) + Cost(5, 

8) + Cost(8, 9))} = 12 

c(1, 3) + Cost(3, 6) + Cost(6, 8 + Cost(8, 9))} = 13 

Hence, the path having the minimum cost is 1→ 3→ 5→ 8→ 9. 

 

 

 

 



4.1.3. ALL PAIRS SHORTEST PATH 

• The all pair shortest path algorithm is also known as Floyd-Warshall algorithm is 

used to find all pair shortest path problem from a given weighted graph.  

• As a result of this algorithm, it will generate a matrix, which will represent the 

minimum distance from any node to all other nodes in the graph. 

 

• At first the output matrix is same as given cost matrix of the graph. After that the 

output matrix will be updated with all vertices k as the intermediate vertex. 

• The time complexity of this algorithm is O(V3), here V is the number of vertices in 

the graph. 

• Input − The cost matrix of the graph. 

0 3 6 ∞ ∞ ∞ ∞ 

3 0 2 1 ∞ ∞ ∞ 

6 2 0 1 4 2 ∞ 

∞ 1 1 0 2 ∞ 4 

∞ ∞ 4 2 0 2 1 

∞ ∞ 2 ∞ 2 0 1 

∞ ∞ ∞ 4 1 1 0 

Output − Matrix of all pair shortest path. 

0 3 4 5 6 7 7 

3 0 2 1 3 4 4 

4 2 0 1 3 2 3 

5 1 1 0 2 3 3 

6 3 3 2 0 2 1 

7 4 2 3 2 0 1 

7 4 3 3 1 1 0 

Algorithm 

floydWarshal(cost) 

Input − The cost matrix of given Graph. 

Output − Matrix to for shortest path between any vertex to any vertex. 

Begin 

   for k := 0 to n, do 



      for i := 0 to n, do 

         for j := 0 to n, do 

            if cost[i,k] + cost[k,j] < cost[i,j], then 

               cost[i,j] := cost[i,k] + cost[k,j] 

            done 

         done 

      done 

      display the current cost matrix 

End 

 

4.1.4. SINGLE SOURCE SHORTEST PATH  

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed weighted 

graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 for each edge (u, v) Є 

E). 

Algorithm: Dijkstra’s-Algorithm (G, w, s) 

for each vertex v Є G.V   

v.d := ∞  

   v.∏ := NIL  

s.d := 0  

S := Ф  

Q := G.V  

while Q ≠ Ф  

   u := Extract-Min (Q)  

   S := S U {u}  

   for each vertex v Є G.adj[u]  

      if v.d>u.d + w(u, v)  

v.d := u.d + w(u, v)  

         v.∏ := u 

Example 

Let us consider vertex 1 and 9 as the start and destination vertex respectively. Initially, all 

the vertices except the start vertex are marked by ∞ and the start vertex is marked by 0. 

Vertex Initial 
Step1 

V1 

Step2 

V3 

Step3 

V2 

Step4 

V4 

Step5 

V5 

Step6 

V7 

Step7 

V8 

Step8 

V6 

1 0 0 0 0 0 0 0 0 0 

2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 



4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 

1→ 3→ 7→ 8→ 6→ 9 

This path is determined based on predecessor information. 

 

 

 

4.1.5. OPTIMAL BINARY SEARCH TREES  

• A Binary Search Tree (BST) is a tree where the key values are stored in the internal 

nodes. The external nodes are null nodes.  

• The keys are ordered lexicographically, i.e. for each internal node all the keys in the 

left sub-tree are less than the keys in the node, and all the keys in the right sub-tree 

are greater. 

• When we know the frequency of searching each one of the keys, it is quite easy to 

compute the expected cost of accessing each node in the tree.  



• An optimal binary search tree is a BST, which has minimal expected cost of locating 

each node 

Optimal Binary Search Tree  

• Given a sorted array keys[0.. n-1] of search keys and an array freq[0.. n-1] of 

frequency counts, where freq[i] is the number of searches to keys[i].  

• Construct a binary search tree of all keys such that the total cost of all the 

searches is as small as possible. 

• Let us first define the cost of a BST. The cost of a BST node is level of that node 

multiplied by its frequency. Level of root is 1. 

Examples: 

Input:  keys[] = {10, 12}, freq[] = {34, 50} 

There can be following two possible BSTs  

        10                       12 

          \                     /  

           12                 10 

          I                     II 

Frequency of searches of 10 and 12 are 34 and 50 respectively. 

The cost of tree I is 34*1 + 50*2 = 134 

The cost of tree II is 50*1 + 34*2 = 118  

 

 

Input:  keys[] = {10, 12, 20}, freq[] = {34, 8, 50} 

There can be following possible BSTs 

    10                12                 20         10              20 

      \             /    \              /             \            / 

      12          10     20           12               20         10   

        \                            /                 /           \ 

         20                        10                12             12   

     I               II             III             IV             V 

Among all possible BSTs, cost of the fifth BST is minimum.   

Cost of the fifth BST is 1*50 + 2*34 + 3*8 = 142 

 

4.1.6. STRING EDITING 

 

• There are two strings given.  

• The first string is the source string and the second string is the target string.  

• In this program, we have to find how many possible edits are needed to convert first 

string to the second string.  

• The edit of strings can be either Insert some elements, delete something from the first 

string or modify something to convert into the second string. 



Input and Output 

Input: 

Two strings to compare. 

string 1: Programming 

string 2: Programs 

Output: 

Enter the initial string: Programming 

Enter the final string: Programs 

The number of changes required to convert Programming to Programs is 4 

Algorithm 

editCount(initStr, finalStr, initLen, finalLen) 

Input − The initial and final string and their lengths. 

Output − Number of edits are required to make initStr to finalStr. 

Begin 

   if initLen = 0, then 

      return finalLen 

   if finalLen := 0, then 

      return initLen 

 

   if initStr[initLen - 1] = finalStr[finalLen - 1], then 

      return editCount(initStr, finalStr, initLen – 1, finalLen - 1) 

   answer := 1 + min of (editCount(initStr, finalStr, initLen , finalLen - 1)), 

      (editCount(initStr, finalStr, initLen – 1, finalLen ), 

      (editCount(initStr, finalStr, initLen – 1, finalLen - 1) 

   return answer 

End 

 

4.1.7. 0/1 KNAPSACK  

• In 0-1 Knapsack, items cannot be broken which means the thief should take the item 

as a whole or should leave it. 

• This is reason behind calling it as 0-1 Knapsack. 

• Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where other 

constraints remain the same. 

o Knapsack cannot be solved by Greedy approach.  

• Greedy approach does not ensure an optimal solution. In many instances, Greedy 

approach may give an optimal solution 

Example-1 

Let us consider that the capacity of the knapsack is W = 25 and the items are as shown in the 

following table. 

Item A B C D 



Profit 24 18 18 10 

Weight 24 10 10 7 

• Without considering the profit per unit weight (pi/wi), if we apply Greedy approach 

to solve this problem, first item A will be selected as it will contribute maximum 

profit among all the elements. 

• After selecting item A, no more item will be selected. Hence, for this given set of 

items total profit is 24. Whereas, the optimal solution can be achieved by selecting 

items, B and C, where the total profit is 18 + 18 = 36. 

The algorithm takes the following inputs 

• The maximum weight W 

• The number of items n 

• The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn> 

Dynamic-0-1-knapsack (v, w, n, W) 

for w = 0 to W do  

   c[0, w] = 0  

for i = 1 to n do  

   c[i, 0] = 0  

   for w = 1 to W do  

      if wi ≤ w then  

         if vi + c[i-1, w-wi] then  

            c[i, w] = vi + c[i-1, w-wi]  

         else c[i, w] = c[i-1, w]  

      else  

         c[i, w] = c[i-1, w]  

 

4.1.8. RELIABILITY DESIGN  

• In reliability design, the problem is to design a system that is composed of several 

devices connected in series. 

 

• If we imagine that r1 is the reliability of the device. 

• Then the reliability of the function can be given by πr1. 

• If r1 = 0.99 and n = 10 that n devices are set in a series, 1 <= i<= 10, then reliability 

of the whole system πri can be given as: Πri = 0.904 



• So, if we duplicate the devices at each stage then the reliability of the system can be 

increased. 

• they make use of such devices at each stage, that result is increase in reliability at 

each stage. If at each stage, there are mi similar types of devices Di, then the 

probability that all mi have a malfunction is (1 - ri)^mi, which is very less. 

• And the reliability of the stage I becomes (1 – (1 - ri) ^mi). Thus, if ri = 0.99 and mi 

= 2, then the stage reliability becomes 0.9999 which is almost equal to 1. Which is 

much better than that of the previous case or we can say the reliability is little less 

than 1 - (1 - ri) ^mi because of less reliability of switching circuits. 

 

Maximize π Øi (mi) for 1 <= I <= n 

Subject to: 

 
 

mi>= 1 and integer 1 <= i<= n 

could not Here, Øi (mi) denotes the reliability of the stage i. 

The reliability of the system can be given as follows: 

Π Øi (mi) for 1 <= i<= n 

If we increase the number of devices at any stage beyond the certain limit, then also only the 

cost will increase but the reliability increase. 

 

 

 



 

4.1.9. TRAVELLING SALESMAN PROBLEM 

• In the traveling salesman Problem, a salesman must visits n cities.  

• We can say that salesman wishes to make a tour or Hamiltonian cycle, visiting each 

city exactly once and finishing at the city he starts from.  

• There is a non-negative cost c (i, j) to travel from the city i to city j. The goal is to find 

a tour of minimum cost.  

• We assume that every two cities are connected. Such problems are called Traveling-

salesman problem (TSP). 

• We can model the cities as a complete graph of n vertices, where each vertex 

represents a city. 

• Let us consider a graph G = (V, E), where V is a set of cities and E is a set of 

weighted edges. An edge e(u, v) represents that vertices u and v are connected. 

Distance between vertex u and v is d(u, v), which should be non-negative. 

• When |S| > 1, we define C(S, 1) = ∝ since the path cannot start and end at 1. 

• Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 and 

end at j. We should select the next city in such a way that 

C(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠j 

c(S,j)=minC(s−{j},i)+d(i,j) 

wherei∈Sandi≠j 

C(S,j)=minC(S−{j},i)+d(i,j) 

wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j) 

wherei∈Sandi≠j 

Algorithm: Traveling-Salesman-Problem 

C ({1}, 1) = 0  

for s = 2 to n do  

   for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  

      C (S, 1) = ∞  

   for all j Є S and j ≠ 1  

      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  

Return minj C ({1, 2, 3, …, n}, j) + d(j, i)  

In the following example, we will illustrate the steps to solve the travelling salesman 

problem. 



 

From the above graph, the following table is prepared. 

 
1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

S = Φ 

Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5 

Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6 

Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8 

 

The minimum cost path is 35. 

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2] 

 

4.1.10.FLOW SHOP SCHEDULING  

 

• There are n machines and m jobs. Each job contains exactly n operations.  

• The i-th operation of the job must be executed on the i-th machine.  

• No machine can perform more than one operation simultaneously. For each operation 

of each job, execution time is specified. 

• Operations within one job must be performed in the specified order.  



• The first operation gets executed on the first machine, then (as the first operation is 

finished) the second operation on the second machine, and so on until the n-th 

operation.  

• Jobs can be executed in any order, however. Problem definition implies that this job 

order is exactly the same for each machine.  

• The problem is to determine the optimal such arrangement, i.e. the one with the 

shortest possible total job execution makespan 

 

 

• In an optimal schedule, job i precedes job j if min{p1i,p2j} < min{p1j,p2i}.  

• Where as, p1i is the processing time of job i on machine 1 and p2i is the processing 

time of job i on machine 2. 

• Similarly, p1j and p2j are processing times of job j on machine 1 and machine 2 

respectively. 

The steps are summarized below for Johnson's algorithms: 

let, p1j=processing time of job j on machine 1 

p2j=processing time of job j on machine 2 

Johnson's Algorithm 

Step 1:Form set1 containing all the jobs with p1j < p2j 

Step 2:Form set2 containing all the jobs with p1j > p2j, the jobs with p1j=p2j may be put 

in either set. 

Step 3: Form the sequence as follows: 

(i) The job in set1 go first in the sequence and they go in increasing order of p1j(SPT) 

(ii) The jobs in set2 follow in decreasing order of p2j (LPT). Ties are broken 

arbitrarily. 

This type schedule is referred as SPT(1)-LPT(2) schedule. 

 

 

  4.2. BASIC TRAVERSAL AND SEARCH TECHNIQUES  

 

4.2.1.TREE TRAVERSAL  TECHNIQUES 

 

Following are the generally used ways for traversing trees. 

 

Example Tree 

Depth First Traversals: 

(a) Inorder (Left, Root, Right) : 4 2 5 1 3 



(b) Preorder (Root, Left, Right) : 1 2 4 5 3 

(c) Postorder (Left, Right, Root) : 4 5 2 3 1 

Inorder Traversal (Practice): 

Algorithm Inorder(tree) 

   1. Traverse the left subtree, i.e., call Inorder(left-subtree) 

   2. Visit the root. 

   3. Traverse the right subtree, i.e., call Inorder(right-subtree) 

Uses of Inorder  

•  

In case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing 

order.  

• To get nodes of BST in non-increasing order, a variation of Inorder traversal where 

Inorder traversal s reversed can be used. 

 

Example: Inorder traversal for the above-given figure is 4 2 5 1 3. 

Preorder Traversal (Practice): 

Algorithm Preorder(tree) 

   1. Visit the root. 

   2. Traverse the left subtree, i.e., call Preorder(left-subtree) 

   3. Traverse the right subtree, i.e., call Preorder(right-subtree)  

 

 

Uses of Preorder 

•  

Preorder traversal is used to create a copy of the tree. 

• Preorder traversal is also used to get prefix expression on of an expression tree.  

Example: Preorder traversal for the above given figure is 1 2 4 5 3. 

 

Postorder Traversal (Practice): 

Algorithm Postorder(tree) 

   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 

   2. Traverse the right subtree, i.e., call Postorder(right-subtree) 

   3. Visit the root. 

 

• Uses of Postorder 

Postorder traversal is used to delete the tree. Please see the question for deletion of 

tree for details.  

https://practice.geeksforgeeks.org/problems/inorder-traversal/1
https://practice.geeksforgeeks.org/problems/preorder-traversal/1
https://practice.geeksforgeeks.org/problems/postorder-traversal/1
https://www.geeksforgeeks.org/write-a-c-program-to-delete-a-tree/amp/
https://www.geeksforgeeks.org/write-a-c-program-to-delete-a-tree/amp/


• Postorder traversal is also useful to get the postfix expression of an expression tree. 

Example: Postorder traversal for the above given figure is 4 5 2 3 1. 

 

4.2.2. TRAVERSAL TECHNIQUES FOR GRAPHS  

• The graph is one non-linear data structure.  

• That is consists of some nodes and their connected edges.  

• The edges may be director or undirected.  

• This graph can be represented as G(V, E). The following graph can be represented as 

G({A, B, C, D, E}, {(A, B), (B, D), (D, E), (B, C), (C, A)}) 

 

• The graph has two types of traversal algorithms.  

• These are called the Breadth First Search and Depth First Search. 

Breadth First Search (BFS) 

• The Breadth First Search (BFS) traversal is an algorithm, which is used to visit all of 

the nodes of a given graph. 

• In this traversal algorithm one node is selected and then all of the adjacent nodes are 

visited one by one.  

• After completing all of the adjacent vertices, it moves further to check another 

vertices and checks its adjacent vertices again. 

Algorithm 

bfs(vertices, start) 

Input: The list of vertices, and the start vertex. 

Output: Traverse all of the nodes, if the graph is connected. 

Begin 

   define an empty queue que 

   at first mark all nodes status as unvisited 

   add the start vertex into the que 

   while que is not empty, do 

      delete item from que and set to u 

      display the vertex u 



      for all vertices 1 adjacent with u, do 

         if vertices[i] is unvisited, then 

            mark vertices[i] as temporarily visited 

            add v into the queue 

         mark 

      done 

      mark u as completely visited 

   done 

End 

Depth First Search (DFS) 

• The Depth First Search (DFS) is a graph traversal algorithm. 

• In this algorithm one starting vertex is given, and when an adjacent vertex is found, it 

moves to that adjacent vertex first and try to traverse in the same manner. 

Algorithm 

dfs(vertices, start) 

Input: The list of all vertices, and the start node. 

Output: Traverse all nodes in the graph. 

Begin 

   initially make the state to unvisited for all nodes 

   push start into the stack 

   while stack is not empty, do 

      pop element from stack and set to u 

      display the node u 

      if u is not visited, then 

         mark u as visited 

         for all nodes i connected to u, do 

            if ith vertex is unvisited, then 

               push ith vertex into the stack 

               mark ith vertex as visited 

         done 

   done 

End 

 

 

4.2.3. CONNECTED COMPONENTS 

• In graph theory, a component, sometimes called a connected component, of 

an undirected graph is a subgraph in which any two vertices are connected to each 

other by paths, and which is connected to no additional vertices in the supergraph.  

 

• For example, the graph shown in the illustration has three components. A vertex with 

no incident edges is itself a component.  

• A graph that is itself connected has exactly one component, consisting of the whole 

graph. 

https://en.m.wikipedia.org/wiki/Graph_theory
https://en.m.wikipedia.org/wiki/Undirected_graph
https://en.m.wikipedia.org/wiki/Subgraph_(graph_theory)
https://en.m.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.m.wikipedia.org/wiki/Connected_graph
https://en.m.wikipedia.org/wiki/Path_(graph_theory)
https://en.m.wikipedia.org/wiki/Glossary_of_graph_theory_terms#supergraph


 

A graph with three components. 

SPANNING TREE 

The spanning tree of a graph (G) is a subset of G that covers all of its vertices using the 

minimum number of edges. 

Some properties of a spanning tree can be deduced from this definition: 

1. Since “a spanning tree covers all of the vertices”, it cannot be disconnected. 

2. A spanning tree cannot have any cycles and consist of (n-1)(n−1) edges (where nn is 

the number of vertices of the graph) because “it uses the minimum number of edges”. 

4.2.4. BICONNECTED COMPONENT AND DFS 

• In graph theory, a biconnected component (sometimes known as a 2-

connected component) is a maximal biconnected subgraph. 

Any connected graph decomposes into a tree of biconnected components 

called the block-cut tree of the graph.  

• The blocks are attached to each other at shared vertices called cut 

vertices or articulation points.  

• Specifically, a cut vertex is any vertex whose removal increases the number 

of connected components. 

 
 

 

 

 

https://www.educative.io/edpresso/what-is-a-graph-data-structure
https://en.m.wikipedia.org/wiki/Graph_theory
https://en.m.wikipedia.org/wiki/Biconnected_graph
https://en.m.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
https://en.m.wikipedia.org/wiki/Connectivity_(graph_theory)#Connected_graph
https://en.m.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.m.wikipedia.org/wiki/Connected_component_(graph_theory)
https://en.m.wikipedia.org/wiki/File:Pseudoforest.svg
https://en.m.wikipedia.org/wiki/File:Graph-Biconnected-Components.svg


Each color corresponds to a biconnected component. Multi-colored vertices are cut 

vertices, and thus belong to multiple biconnected components. 
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5.1. BACK TRACKING 

 

5.1.1. GENERAL METHOD: 
 
Backtracking is used to solve problem in which a sequence of objects is chosen from a  
specified set so that the sequence satisfies some criterion. The desired solution is 
expressed as an n-tuple (x1,  ......  , xn) where each xi  Є   S, S being a finite set. 
 
The solution is based on finding one or more vectors that maximize, minimize, or 
satisfy a criterion function P (x1,  ........  , xn). Form a solution and check at every step 
if this has any chance of success. If the solution at any point seems not promising, 
ignore it. All solutions requires a set of constraints divided into two categories: explicit 
and implicit constraints. 
 
Definition 1: Explicit constraints are rules that restrict each xi to take on values only  
 from a given set. Explicit constraints depend on the particular instance I  
 of problem being solved. All tuples that satisfy the explicit constraints  
 define a possible solution space for I. 
 
Definition 2: Implicit constraints are rules that determine which of the tuples in the  
 solution   space   of   I   satisfy   the   criterion   function.   Thus,   implicit  
 constraints describe the way in which the xi‟s must relate to each other. 

 

 

 

5.1.2. 8-QUEENS PROBLEM: 
 
Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8 

chessboard so that no two “attack”, that is, no two of them are on the same row, 

column, or diagonal. 
 
All solutions to the 8-queens problem can be represented as 8-tuples (x1, ........  , x8), 
where xi  is the column of the ith row where the ith queen is placed. 
 
The explicit constraints using this formulation are Si  = {1, 2, 3, 4, 5, 6, 7, 8}, 1 <i < 
8.Therefore the solution space consists of 88 8-tuples. 
 
The implicit constraints for this problem are that no two x i‟s can be the same (i.e., all  
queens must be on different columns) and no two queens can be on the same  
diagonal. 
 
This realization reduces the size of the solution space from 88 tuples to 8! Tuples. 
 
The promising function must check whether two queens are in the same column or  
diagonal: 
 
Suppose two queens are placed at positions (i, j) and (k, l) Then: 

  Column Conflicts: Two queens conflict if their xi  values areidentical.  

  Diag 45 conflict: Two queens i and j are on the same 450 diagonal if:  

 i - j = k - l. 

This implies, j - l = i - k 
 

  Diag 135 conflict: 
i  + j = k + l. 

 
This implies, j - l = k - i 

 



* 
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* 
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Therefore, two queens lie on the same diagonal if and only if: 

 
j - l = i - k  

 
 

 

Where, j be the column of object in row i for the ith queen and l be the column of  
 object in row „k‟ for the kth queen. 
 
 
 
 
 
 
 
 
 

 

 

 

 

Step 1: 
Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet  
used. 

 
Step 2: 

If this new sequence is feasible and has length 8 then STOP with a solution. If 

the new sequence is feasible and has length less then 8, repeat Step 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3: 

If the sequence is not feasible, then backtrack through the sequence until we  
find the most recent place at which we can exchange a value. Go back to Step  
1. 

 
 
 

 Program for N-Queens Problem: 

 
# include <stdio.h> 
# include <conio.h> 
# include <stdlib.h> 
 
int x[10] = {5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; 
 
place (int k) 
{ 

int i; 



for (i=1; i < k; i++)  
{ 

if ((x [i] == x [k]) || (abs (x [i] - x [k]) == abs (i - k)))  
return (0); 

} 
return (1);  

} 
nqueen (int n)  
{ 

int m, k, i = 0;  
x [1] = 0; 
k = 1; 
while (k > 0)  
{ 

x [k] = x [k] + 1; 
while ((x [k] <= n) && (!place (k)))  
 x [k] = x [k] +1; 
if(x [k] <= n)  
{ 

if (k == n)  
{ 

i++; 
printf (“\ncombination; %d\n”,i); 
for (m=1;m<=n; m++) 
printf(“row = %3d\t column=%3d\n”, m, x[m]);  
getch(); 

} 
else  
{ 

k++; 
x [k]=0;  

} 
} 
 
else 

k--; 
} 
return (0); 

 
 
 } 

main ()  
{ 

int n; 
clrscr (); 
printf (“enter value for N: “); 

scanf (“%d”, &n); 
nqueen (n); 

} 
 
 
Output: 
 
Enter the value for N: 4 
 
Combination: 1 Combination: 2 
 
Row = 1     column = 2 3 
Row = 2     column = 4 1 
Row = 3     column = 1 4 
Row = 4     column = 3 2 
 
For N = 8, there will be 92 combinations. 

 
 
 

 
 
 
 
 
 



 
 
5.1.3.SUM OF SUBSETS: 

Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets 

of wi  whose sums are „m‟. 

All solutions are k-tuples, 1 ≤ k ≤ n. 

Explicit constraints: 

 xi Є {j | j is an integer and 1 ≤ j ≤ n}. 

Implicit constraints: 

No two xi  can be the same. 
 

The sum of the corresponding wi‟s be m. 
 
 xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple  
 instances of the same subset (for example, (1, 2, 4) and (1, 4, 2)  
 represent the same subset). 

 
A better formulation of the problem is where the solution subset is represented by an 
n-tuple (x1, ........  , xn) such that xi Є {0, 1}. 

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1).  

For both the above formulations, the solution space is 2n distinct tuples. 

For example,  n = 4,  w = (11, 13, 24, 7) and m = 31, the desired subsets are (11, 

13, 7) and (24, 7). 
 
 

 

The following figure shows a possible tree organization for two possible formulations 
of the solution space for the case n = 4. 
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A p o s s ib le s o lut io n s p ac e org a nis at io n f or t h e  
 s u m of t h e s u b s et s pro b le m. 

 
The tree corresponds to the variable tuple size formulation. The edges are labeled 
such that an edge from a level i node to a level i+1 node represents a value for x i. At 
each node, the solution space is partitioned into sub - solution spaces. All paths from 
the root node to any node in the tree define the solution space, since any such path 
corresponds to a subset satisfying the explicit constraints. 
 
The possible paths are  (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2, 

3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next 
sub-tree defines all subsets containing w2 but not w1, and so on. 

 
 
 
5.1.4.GRAPH COLORING  

 
Let G be a graph and m be a given positive integer. We want to discover whether the  
nodes of G can be colored in such a way that no two adjacent nodes have the same  
color, yet only m colors are used. This is termed the m-colorabiltiy decision problem.  
The m-colorability optimization problem asks for the smallest integer m for which the  
graph G can be colored. 

Given any map, if the regions are to be colored in such a way that no two adjacent 

regions have the same color, only four colors are needed. 

For many years it was known that five colors were sufficient to color any map, but no  
map that required more than four colors had ever been found. After several hundred  
years, this problem was solved by a group of mathematicians with the help of a  
computer. They showed that in fact four colors are sufficient for planar graphs. 

The function m-coloring will begin by first assigning the graph to its adjacency matrix,  
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . , m  
and the solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of  
node i. 

A recursive backtracking algorithm for graph coloring is carried out by invoking the 
statement mcoloring(1); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Algorithm mcoloring (k) 
{ 

repeat 
{  

NextValue (k);  
If (x [k] = 0)  then return;  
If (k =  n) then  

write (x [1: n]); 
else mcoloring (k+1); 

} until (false); 
} 

 
Algorithm NextValue (k) 
{ 

repeat  
{ 

x [k]: = (x [k] +1)  mod (m+1)  
If (x [k] = 0)  then return;  
for j := 1 to n do 
{  

if ((G [k, j] 0) and (x [k] = x [j])) 
then break; 

} 
if (j = n+1)  then return;  

} until (false);  
} 
 
 
Example: 
 
Color the graph given below with minimum number of colors by backtracking using 
state space tree. 
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5.1.5. HAMILTONIAN CYCLES: 

 
Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle (suggested  
by William Hamilton) is a round-trip path along n edges of G that visits every vertex  
once and returns to its starting position. In other vertices of G are visited in the order  
v1, v2,.............  , vn+1, then the edges (vi, vi+1) are in E, 1 <i <n, and the vi  are 
distinct  expect  for  v1   and  vn+1,  which  are  equal.  The  graph  G1   contains    the  
Hamiltonian cycle 1, 2, 8, 7, 6, 5, 4, 3, 1. The graph G2 contains no Hamiltonian  
cycle. 

 
 
 
 
 
1 2 3 4 1 2 3 
 
 
 
8 7 6 5 5 4 
 

Graph G1 Graph G2 
 
 
Two graphs to illustrate Hamiltonian cycle 

The backtracking solution vector (x1,  ........  xn) is defined so that xi represents the ith  
visited vertex of the proposed cycle. If k = 1, then x1 can be any of the n vertices. To  
avoid printing the same cycle n times, we require that x1 = 1. If 1 < k < n, then xk  
can be any vertex v that is distinct from x1, x2, . . . , xk-1 and v is connected by an  
edge to kx-1. The vertex xn can only be one remaining vertex and it must be connected  
to both xn-1 and x1. 

Using NextValue algorithm we can particularize the recursive backtracking schema to  
find all Hamiltonian cycles. This algorithm is started by first initializing the adjacency  
matrix G[1: n, 1: n], then setting x[2: n] to zero and x[1] to 1, and then executing  
Hamiltonian(2). 

The traveling salesperson problem using dynamic programming asked for a tour that  
has minimum cost. This tour is a Hamiltonian cycles. For the simple case of a graph  
all of whose edge costs are identical, Hamiltonian will find a minimum-cost tour if a  
tour exists. 
 
Algorithm NextValue (k) 
// x [1: k-1] is a path of k - 1 distinct vertices . If x[k] = 0, then no vertex has as yet been  
// assigned to x [k]. After execution, x[k] is assigned to the next highest numbered vertex  
// which does not already appear in x [1 : k - 1] and is connected by an edge to x [k - 1].  
// Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x [1].  
{ 

repeat  
{ 

x [k] := (x [k] +1)  mod (n+1); // Next vertex. 
If (x [k] = 0) then return; 
If (G [x [k - 1], x [k]] 0) then 
{ // Is there an edge? 

for j := 1 to k - 1 do if (x [j] = x [k]) then break; 
// check for distinctness. 

If (j =  k) then // If true, then the vertex is distinct. 
If ((k < n) or ((k = n) and G [x [n], x [1]] 0)) 

then return; 
} 

} until (false);  
} 

 
 



 
 
 
 
 
 

Algorithm Hamiltonian (k) 
// This algorithm uses the recursive formulation of backtracking to find all the Hamiltonian 
// cycles of a graph. The graph is stored as an adjacency matrix G [1: n, 1: n]. All cycles  begin 

// at node 1. 
{ 

repeat 
{ 

NextValue (k);  
if (x [k] = 0) then return;  
 if (k = n) then write (x [1: n]); 

else Hamiltonian (k + 1) } until (false); 
} 
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Branch and Bound is another 

method to systematically 

search a solution space. Just 

like backtracking, we will use 

bounding functions to avoid 

generating subtrees that do not 

contain an answer node. 

However branch and Bound 

differs from backtracking in two 

important manners: 
 
 

 



 

 

 

                                         5.2. BRANCH AND BOUND 
 

 

 

5.2.1. THE GENERAL METHOD 
 

1.  It has a branching function, which can be a depth first search, breadth first 
search or based on bounding function. 

 
2.  It has a bounding function, which goes far beyond the feasibility test as a 

mean to prune efficiently the search tree. 
 
Branch and Bound refers to all state space search methods in which all children of the E-node are generated before any 
other live node becomes the E-node 

Branch and Bound is the generalisation of both graph search strategies, BFS and D- 
search. 

 
  A BFS like state space search is called as FIFO (First in first out) search 

as the list of live nodes in a first in first out list (or queue). 
 

  A D search like state space search is called as LIFO (Last in first out) 
search as the list of live nodes in a last in first out (or stack). 

 
 
 
5.2.2. 0/1 KNAPSACK: 

 
Given n positive weights wi, n positive profits pi, and a positive 
number m that is the  
knapsack capacity, the problem calls for choosing a subset of 
the weights such that: 

wi xi  mand  pixi  is maximized. 
1 i n 1 i n 

 

The xi‟s constitute a zero-one-valued vector. 

The solution space for this problem consists of the 2n distinct 

ways to assign zero or one values to the xi‟s. 

Bounding functions are needed to kill some live nodes without 

expanding them. A good bounding function for this problem is 

obtained by using an upper bound on the value of the best 

feasible solution obtainable by expanding the given live node 

and any of its descendants. If this upper bound is not higher 

than the value of the best solution determined so far, than that 

live node can be killed. 

 If at node Z the values of xi, 1 <i <k, have already been 

determined, then an upper bound for Z can be obtained by 

relaxing the requirements xi = 0 or 1. 

The i thth  item contributes the weight xi.wixi.wi to the total weight in the knapsack an 

profit xi.pixi.pi to the total profit. 
Hence, the objective of this algorithm is to 

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi) 

subject to constraint, 

∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W 

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add a 
fraction of one of the remaining items and increase the overall profit. 



Thus, an optimal solution can be obtained by 

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W 

In this context, first we need to sort those items according to the value of piwipiwi, so 

that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to store the fraction of items. Algorithm: 

Greedy-Fractional-Knapsack (w[1..n], p[1..n], W) 

for i = 1 to n 

do x[i] = 0 

weight = 0 

for i = 1 to n 

if weight + w[i] ≤ W then 

x[i] = 1 

weight = weight + w[i] 

else 

x[i] = (W - weight) / w[i] 

weight = W 

break 

return x 
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